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Abstract: A review of the literature published in from 2008 to 2010 on topics related to 

electrochemical treatment within wastewater was presented. The review included several 

sections such as optimization, modeling, various wastewater treatment techniques, 

analytical and instrumentation, and comparison with other treatment methods. 
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1. Definition of Electrocoagulation-Flotation (ECF) 

Electrocoagulation-electroflotation (ECF) technology is a treatment process of applying electrical 

current to treat and flocculate contaminants without having to add coagulations. Shammas et al. stated 

that coagulation occurs with the current being applied, capable of removing small particles since direct 

current applied, setting them into motion. Also electrocoagulation could reduce residue for waste 

production [1].  

Electrocoagulation consists of pairs of metal sheets called electrodes, that are arranged in pairs of 

two—anodes and cathodes. Using the principles of electrochemistry, the cathode is oxidized (loses 

electrons), while the water is reduced (gains electrons), thereby making the wastewater better treated. 

When the cathode electrode makes contact with the wastewater, the metal is emitted into the apparatus. 
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When this happens, the particulates are neutralized by the formation of hydroxide complexes for the 

purpose of forming agglomerates. These agglomerates begin to form at the bottom of the tank and can 

be siphen out through filtration. However, when one considers an electrocoagulation-flotation 

apparatus, the particulates would instead float to the top of the tank by means of formed hydrogen 

bubbles that are created from the anode. The floated particulates can be skimmed from the top of  

the tank.  

To consider how effective the ECF reactor can be, one must consider the following inputs or 

variables—wastewater type, pH, current density, type of metal electrodes (aluminum, steel, iron), 

number of electrodes, size of electrodes, and configuration of metals. These variables would affect the 

overall treatment time, kinetics, and also the removal efficiency measured.  

Electrocoagulation-flotation is an alternative method to classic chemical coagulation for many 

reasons. ECF is capable of reducing the need for chemicals due to the fact that the electrodes provide 

the coagulant. However, many individuals still use chemical coagulants to attempt to enhance 

treatment. Traditionally, chemical coagulation involves the use of alum (aluminum sulfate), ferric 

chloride (FeCl3), or ferrous sulfate (Fe2SO4) which can be very expensive depending on the volume of 

water treated. When applying the coagulant, the coagulant performs a similar function as the electrodes, 

neutralizing the charge of the particulates, thereby allow them to agglomerate and settle at the bottom 

of the tank. In addition, electrocoagulation-flotation is capable of reducing waste production from 

wastewater treatment and also reduces the time necessary for treatment.  

2. Optimization 

By considering the Box-Behnken design of surface response analysis for color removal within 

distillery spent wash, Krisna Prasad et al. found that 95% color removal was obtained with  

31 mA/cm
2
, dilution of 17.5%, and 4 hour electrolysis design. At optimum conditions, the treatment 

efficiency was at 93.5% [2]. Chavalparit and Ongwandee concluded that removal of 55.43% COD, 

98.4% oil and grease, and 96.59% suspended solids was obtained using a pH of 6.06, applied voltage 

of 18.2 V, and reaction time of 23.5 minutes when using the Box-Behnken design for biodiesel 

wastewater [3]. Kaparal et al. was able to determine the dye removal by the Taguchi method, by using 

an initial dye concentration of 100 mg/L, pH of 3, current density of 0.5 mA/cm
2
, CaCl2 concentration 

of 2.5 mM for the treatment of Bompalex Red CR-L dye. Experimental design involved an orthogonal 

array using 5 simultaneous parameters [4]. Tchamango et al. used electrocoagulation for artificial 

wastewater with milk powder to simulate dairy effluents, COD was reduced by 61%, phosphours by 

89%, nitrogen 81%, and 100% turbidity. In addition with low conductivity and neutral pH, treated 

water would be possible reused, as reagent required was lowered for the aluminum anode for  

treatment [5]. Körbahti and Tanyolaç concluded that 100% pollution load, 61.6% COD, 99.6% color 

removal, and 66.4% turbidity were accomplished by an electrochemical reactor, where optimum 

conditions for conducting the experiment were at temperature of 30 degrees Celsius, 25 g/L electrolyte 

concentration, 8 V electrical potential, with a 35.5 mA/cm
2
 current density. This was accomplished to 

treat simulated textile dye wastewater with NaCl electrolyte based on response surface methodology [6]. 

Hammami et al. concluded that electrochemical oxidation of chromium(III) from chromium(VI) 

was accomplished with titanium-platinum anodes for the purpose of treating tanning bath effluent. The 
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Doehlert design optimized Cl ions, temperature in degrees Celsius, pH, intensity of current, time of 

electrolysis. From the results, the authors observed that current intensity, COD (chemical oxygen 

demand), TOC (total organic carbon), and electrochemical oxidation were major parameters [7]. 

Olmez studied hexavalent chromium removal with stainless steel electrodes with electrocoagulation by 

response surface methodology and concluded that complete treatment could be accomplished by the 

elctrocoagulator with 7.4 A current and 33.6 mM electrolyte concentration (NaCl), a 70 minute 

application time and FeSO4 × 7H2O as a coagulant. The authors considered the use of a Central 

Composite Design for the optimization [8]. Arslen-Alton et al. concluded that the central composite 

design was used to optimize CI Acid Blue 193 treatment by electrocoagulation. The central composite 

design is capable of achieving maximum color, COD, TOC, by manipulating the COD, pH, electrical 

current density, and treatment time by means of a response surface quadratic model [9]. Cora and 

Hung were able to remove metallic ions between 90 and 99% after 30 minutes of treatment using an 

electrocoagulation/electrofiltration with a pH of 9.5 and cadmium chloride for the metallic ions [10]. 

Aleboyeh et al. concluded that Acid Red 14 had a 91% removal rate when current density reach 102 

A/m
2
, electrolysis time of 4.47 minutes, and a pH of 7.27. This treatment was obtained within an 

electrocoagulation batch reaction under a 2
3
 full factorial central composite face center design, where a 

second-order regression model was used [11]. 

Zodi et al. derived a statistic analysis using a Box-Behkey design for surface response analysis 

using electrochemical sedimentation. Having considered current density, pH, and electrolysis design, 

the authors were capable of studying the effects of COD, turbidity, TS removal, and sludge settling 

with aluminum electrodes [12]. Vasudevan et al. considered using mild steel as anode and cathode, 

removing 98.6% arsenate at a current density of 0.2 A/dm
2
, and a pH of 7. Kinetics determined that the 

removal was within 15 minutes, following a second order rate absorption. Finally, Langmuir 

adsorption isotherm describes appropriately this condition [13]. 

3. Modeling 

3.1. Kinetics 

Balasubramanian et al. modeled adsorption isotherm kinetics for arsenic removal from aqueous 

solutions by means of electrocoagulation through response surface methodology [14]. Thakur et al. 

concluded that COD and color removal of 61.6% and 98.4%, respectively, were capable of treating 

bio-digester effluent within an electrocoagulator. This was a result of a bio-digester plant followed by 

two-stage aerobic treatment. When considering a second-order regression model for this  

phenomena—pH, current density, inter-electrode distance, and electrolysis time as parameters, the 

model concluded an r
2
 value of 0.9144 for COD and 0.7650 for color [15]. By producing a 

mathematical model, Canizares et al. determined that electrocoagulation can treat kaolin suspension by 

determining the total aluminum concentration and pH, along with reactivity and pollutant 

concentration. The authors noted the neutralization of kaolin particles and enmeshing particles with 

precipitation. The results of the model could produce an r
2
 value of 0.92 [16]. Canizares et al. 

determined that a model comprised with Ericohrome Black T and oil/water emulsion where the 

primary mechanism operated were aluminum hydroxide precipitate and charge neutralization of 
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Eriochrome Black T, while one drop of aluminum precipitate was applied for oil/water emulsion 

removal. When applying this model, 96% of Erichrome Black T was removed, while 92% oil/water 

was emulsified [17].  

Zaroual et al. concluded that 91% removal efficiency was capable for treating chromium (III) with 

aluminum anodes for electrocoagulation. Additionally, a mathematical model was established using 

central composite design, using a pH of 4.23, electrical potential of 9.14 V, 10 minute reaction time, 

and 27.5 °C temperature. Treatment efficiency of 91% could be completed with an energy 

consumption of 3.536 kWh/m
3
 [18]. Arslan-Alaton et al. was able to model treatment of Acid Blue 

193 by Central Composite Design. According to the model, COD, TOC, and color removal were 

chosen. Removal efficiency of 96% color, 82% COD, and 51% TOC was established for Fe
2+

 

concentration is 3 mM, H2O2 concentration is 25 mM, a reaction time of 10 minutes, pH of 3, and a 

COD of 245 mg/L were obtained for Fenton treatment, compared to 50 A/m
2
, with a reaction time of 

15 minute, pH of 7, and initial COD of 245 mg/L [19]. Saravanan et al. concluded that by using Acid 

Blue 113 with electrocoagulation was capable of removing 91% COD under 3 A/dm
2
 of current 

density, pH of 6.5, and 2 g/L electrolytes concentration. The authors determined that this relationship 

resembled a pseudo-first order kinetic model [20]. 

Gadd et al. concluded that treatment efficiency was related to the electrode area, along with 

coagulant and bubbles, functions of electrode area, current density, and efficiency. This operation was 

completed using a vertical plate electrocoagulation treating molasses process wastewater [21].  

Rodrigo et al. developed model for wastewater pollution considering hydrodynamic conditions using 

chemical reaction of reagents and pollutants, where a multivariable modeling of anodes was described. 

The model combined a macroscopic/maximum gradient approach for all processes with pseudo 

equilibrium [22].  

3.2. Computer Modeling and Statistics 

Aber et al. concluded that an artificial neural network was capable of producing an r
2
 value of 0.976 

as compared to experimental data for treating synthetic and real electrocoagulation. Parameters 

included 30 minutes electrolysis time, pH between 5 to 8, the use of NaCl for better Cr(VI) removal 

(17.1 mg/L), and the use of iron electrodes as compared to Al (95% vs. 15% efficiency) [23].  

Bhatti et al. determined that performance for treatment of Cr (VI) from 100 mg/L using Al-Al 

electrodes, would notice a 100 cm
2
 surface area, and 15 mm electrode distance. Electrocoagulation 

could reduce Cr (VI) by 90.4% at pH 5, 24 V electrical potential, 24 minute hydrolysis time, and 13.7 

kWh/m
3
 electrical energy. The results for optimization were compared using coefficients of 

determination, where 0.8873 was produced with voltage × time and 0.9270 for amperage × time, while 

energy consumption was related to voltage × time (0.89490) and amperage × time is 0.9400 [24]. 

Salari et al. considered the process of peroxi-coagulation for the purpose of decolorization of C.I. 

Basic Yellow 2, when using a sulfate electrolyte media at 3.0 and a gas-diffusion electrode (GDE) as 

cathode. According to the results, 90% decolorization occurred within 30 minutes, while the artificial 

neural network (ANN) was proven to show how decolorization could be efficient under various  

constraints [25]. Zarei et al. considered the treatment of four dyes within an aqueous solution—C.I. 

Basic Blue 3, Malachite green, C.I. Basic red 46, and C.I. Basic Yellow 2 at pH 3 using a carbon 
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nanotube polytetrafluoroethleyene (CNT-PTFE) as cathode. From the experiment, 90% decolorization 

was determined within 10 minutes through modeling using the artificial neural network model. From 

the model, an r
2
 value of 0.989 was produced for decolorization. Also, TOC for C.I. Basic Yellow was 

removed at 92% and mixed dyes at 93% within 6 hours. Compared with the real wastewater, 95% 

removal of Basic Yellow 2 and mixed dyes had a 90% removed within 40 minutes [26]. 

Hu et al. concluded that current density, initial pH, electrolyte species, initial concentration of dye 

produce the effects upon the removal of C.I. Reactive Red 241 by electrocoagulation in regards to 

decolorization. From the results, it was determined that dye removal was a first order reaction, where 

the COD removal could be determined using the artificial neural network (ANN) and response surface 

method (RSM) models [27]. Cai and White prepared a model for simulation of reducing Cr(VI) by 

ferrous iron anode through electrocoagulation using electrochemical and homogenous reactions. The 

parameters considered including material feed velocity, support electrolyte concentration, and cell 

potential on Cr(VI) conversion [28]. Zhu et al. concluded that a homemade reactor known as 

coagulation-electrocoagulagtion technology for thrice oilfield sewage where removal is 69.3% COD 

with pH is 7, aluminum sulfate dosage is 300 mg/L, rotational speed at 500 r/min for 30 minutes, 

current density of 12.5 A/m
2
, and temperature 40 Delta DGC [29]. 

4. Decolorization 

Kuleyin and Balcioglu concluded that by removing crystal violet by electrocoagulation under 

various pH values, 99% color was removed at pH within 10 minutes electrolysis time. When current 

density was increased from 5.8 to mA/cm
2
, there was a 40% increase in removal. Also, color was 

removed with an efficiency of 95% for an initial concentration of 90 mg/L, while 55% removal was 

observed when the concentration was 570 mg/L [30]. Zhang et al. determined that 97% color removal 

was obtained after 10 minutes electrolysis time, with an electrical potential of 20 V, current of 0.4 A, 

electrode distance of 2.5 cm, concentration of 500 mg/L, KCl concentration of 0.5 g/L , and a pH of 

3.0 for the purpose of treating methyl orange simulate dye wastewater by electrocoagulation. The 

authors were able to construct a model in which coagulation was determined for CODCr removal 

followed by oxidation [31]. Kabdaşlı et al. noticed that color abatement can use stainless steel 

electrodes for electrocoagulation of reactive dyebath effluent. The most effective treatment was using 

Na2CO3 for color and COD removals, while NaCl concentration solved the problems when using 

Na2CO3 by better enhancing color and COD removal efficiencies when pH was above 11 for 

coagulation and adsorption [32]. Jain et al. concluded that azo reactive dye, a component from color 

paper, plastic, food, and pharmaceutical products are difficult to treat with conventional treatment 

methods due to water solubility and polar compounds [33]. Yang determined that decolorization of 

reactive dye was high affected by current density, pH, temperature, dye concentration, and NaCl was 

optimal at 88%, pH between 4 and 9, and NaCl was the major factor within decolorization [34]. 

Ghosh et al. observed a 99.75% crystal violet removal by electrocoagulation when initial treatment 

concentration was 100 mg/L, current density 1,112.5 A/m
2
, solution conductivity of 1.61 S/m, pH of 

8.5, and 1 hour of electrolysis time. It was also noticed that the cost for optimum treatment was  

0.2141 US$/m
3 

[35]. Sengil and Ozacar removed 98% of color at dye concentration of 100 mg/L, pH 

of 5, current density of 45.75 mA/cm
2
, salt concentration of 3,000 mg/L, temperature of 20 degrees 
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Celsius, and inter electrode distance of 2.5 cm. Also, results showed an energy consumption of  

4.96 kWh/kg dye using a first-order equation [36]. Chen et al. completed a laboratory scale experiment 

considering dyestuff by pulse electrocoagulation, having considering the parameters of pulse duty 

factor, frequency, current density, and electrolysis time. It was determined that energy and electrode 

consumption was improved over direct current (DC) electrocoagulation [37]. Bellebia et al. discovered 

that Marine Blue Erionye MR dye and Brilliant Blue Levafix E-BRA (reactive dye) could be removed 

successfully under 7.46 and 1.49 F/m
3

 loading and abatement at a concentration of 200 mg/L. Reactive 

dye Brilliant Blue Levafix E-BRA was completely removed during adsorption of 700 mg/L granular 

activated carbon (GAC) [38]. Ahlawat et al. determined that cotton blue acid dye by means of 

electrocoagulation using aluminum electrodes could be removed at a 97% efficiency, provided pH was 

6, electrolysis time of 15 minutes, and an initial concentration of 100 mg/L, and applied voltage of 11. 

In addition, the authors determined that electrocoagulation was capable of degrading sludge suitable 

for disposal [39]. Liu et al. determined by using electrocoagulation, Eriochrome Black T simulated dye 

wastewater was degraded considering the following parameters—space of plates, electrolysis time, 

electrolysis concentration, current density, and pH. Optimum conditions are plates at 2.5 cm, NaCl  

1.0 g/L, density of 5 mA/cm
2
, and pH 5.5. It was observed that 98% decoloration was determine, 

where the energy consumption was 2.76 kWh/kg [40].  

Murthy and Raina found that navy blue-3G by means of electrocoagulation considered the following 

parameters—concentration, type of electrode, turbidity, voltage, pH, and time. Decolorization removal 

was 95% and 93% using aluminum and iron electrodes respectively [41]. Maghana et al. concluded that 

BOD, COD, and conductivity were capable of being removed by electrocoagulation within tea effluent. 

Using effluent from the Chemomi tea factory in Rift Valley, Kenya, the authors were capable to reduce 

COD by 96.6%, BOD by 84.0%, and conductivity by 31.5% and increase pH by 10.32%. The optimum 

parameters were electrical potential of 24 V, interelectrode distance of 5 mm, effluent volume ratio of 

18.2 m
2
/m

3
, and a pH of 6. Electrocoagulation oxidized phenol tea color pigments that were ionization of 

iron in the pigments, form radicals, and phenols of long chains [42]. Song et al. determined that 96% of 

colored and 80% TOC was removed by an ozone electrocoagulator with an optimum pH of 10, dye 

concentration of 100 mg/L, current density of 10 mA/cm
2
, salt concentration of 3,000 mg/L, 

temperature of 30 degrees Celsius, ozone flow rate of 20 mg/L, and electrode distance of 3 cm [43]. 

Sengil et al. were able to decolorize 98% of Reactive Black 5 from synthetic wastewater by using 

electrocoagulation with iron electrodes. Optimum conditions for treatment include dye concentration 

of 100 mg/L, pH of 5, current density of 4.575 mA/cm
2
, salt concentration of 3,000 mg/L, temperature 

of 20 degrees Celsius, and inter electrode distance of 2.5 cm. The authors also observed electrical 

energy consumption of 4.96 kWh/kg dye [44]. 

Zidane et al. concluded that by testing various NaCl concentrations as an electrode by a factor of 

ten (1.5 and 1) from 10
−3

 to 10
−2

, electrocoagulation could treat CI Red Reactive 41 at best between 41 

and 96% removal efficiency, where the absorption was at 540 nm through 60 minutes of treatment, 

where concentration ranges between 100 and 400 mg/L. At the 400 mg/L concentration, 88% 

absorption occurs within 10 minutes, as compared to 60% when using direct coagulation using an 

electric potential of 10 to 15 V. However, 100% removal could be achieved when using 

electrochemical treatment [45]. Kalyani et al. determined that COD removal was 95% and color 

removal was 92% when using mild steel, and 89% color and COD removal for aluminum electrodes 
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when attempting to treat pulp and paper industrial effluent. When it was combined using 

electrocoagulation with a sequential batch reactor, Langumir and Radke-Paushitz isotherm models 

were used for an adsorption isotherm [46]. Merzouk et al. concluded that COD removal was greater 

than 80% and color 85% when considering synthetic textile wastewater using aluminum electrodes, a 

COD 2,500 mg/L dye concentration was reduced to less than 200 mg/L, a pH between 6 and 9, 

residence time of 14 minutes, current density of 31.25 mA/cm
2
, and water conductivity of 2.4 mS/cm 

at an electrode distance of 1 cm [47]. Essadki et al. concluded that 80% COD and color as a function 

of current density. Additional efficiency specific energy and electrode related to current, electrode gap, 

and conductivity. This can be achieved by using pollutant flotation and recirculation with H2 

microbubbles by water electrolysis. This was achieved using red dye from Moroccan textile using a  

20 L external loop air-reactor with a batch electrocoagulator [48]. Hanafi et al. compiled a study on 

olive mill wastewater treatment considering modifying COD, polyphenols, dark color removal, and pH. 

Through an optimum time of 15 minutes, 2 mg/L of Cl2 concentration, pH of 4.2, and density of  

250 A/m
2

 , polyphenols were reduced by 70%, electrode composition is 0.085kg Al/kg CODremoced, and 

energy concsumption 2.63 kWh/kg CODremoved [49]. 

Balla et al. studied the efficiency of an electrocoagulation/electroflotation had a 90% removal rate 

of color with synthetic mixture as compared to 78–90% removal of color in textile wastewater by 

providing mixture of Red S3B 195, Yellow SPD, Blue BRFS, Yellow Terasil 4G, Red terasil 343, and 

Blue terasil 3R02. In addition, electrical energy for mixture dyes was high energy requirement than the 

two other dyes [50]. Animes et al. concluded that application of an electrocoagulation process, color 

was removed between 90 and 98% when operating the apparatus for one hour treatment of trypan blue, 

orange G with electrodes made from mild steel and aluminum electrodes. Additional effects involved 

higher density currents and pH [51]. 

5. Wastewater Treatment 

5.1. Domestic Wastewater Treatment 

Yang et al. studied the electrocoagulation electroflotation processes and noted that high COD 

removal could be achieved; however, suspended solids and color removal was not conducive for 

secondary sewage treatment; nevertheless, electrocoagulation could be used for small scale, 

decentralized municipal domestic sewage treatment [52]. Illhan et al. concluded that COD and SS 

could be removed at 60 and 70%, respectively, from domestic wastewater at the Istanbul-Yenikapi 

Domestic Wastewater Treatment Plant with electrocoagulation using iron-iron electrodes. Operating 

parameters included 0.6 W electrical power, electrolysis time of 15 minutes for heavy load  

(380 mg COD/L) and 8 minutes for weakly loaded (260 mg COD/L). It was determined that electrical 

charge conditions were 0.4 kWh/m
3
 for heavy loads, and 0.2 kWh/m

3
 for weakly loaded. Sludge 

production was between 1.5 and 2%. [53]. Bukhari was capable of removing 95.4% TSS treatment 

efficiency with a current of 0.8 A and a contact time of 5 minutes using an electro-coagulator with 

stainless steel electrodes. The pattern is noticed was a sweep-floc coagulation where soluble ferrous 

ions were changed to insoluble ferric ions by oxidation with chlorine. Also, the BOD had a profound 

effect on the TSS removal in the presence of particulates [54]. Rodrigo et al. is capable of removing 
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ionic phosphorus and COD, when using conductive-diamond electrochemical oxidation and 

electrocoagulation for persistent organic consumption, specifically regeneration of urban wastewater. 

The study stated that energy consumption is capable of removal at values lower than 4.5 kWh/m
3
 [55]. 

5.2. Industrial Wastewater Treatment 

Zongo et al. determined that by using electrocoagulation for textile industry wastewater with 

aluminum and iron electrodes, the authors concluded that that the important parameters—energy 

consumption where COD, turbidity abatement, electrode material, current efficiency, and cell voltage. 

Absorbance and COD had similar variations along the treatment, where a model could relate metal 

dissolution and pollution substance [56]. Linares-Hernandez et al. determined that 99% COD, 100% 

color, and 100% turbidity was removed by a two-step process—electrocoagulation with iron electrode 

and electrooxidation with a boron dipped diamond electrode [57]. Augustin determined that 

electrocoagulation aws capable of reducing turbidity, acidity, BOD, COD, and heavy metals within 

palm oil mill effluent from Chumporn Province in Thailand using aluminum electrodes and NaCl as 

electrolyte. Also, electrocoagulation was determined to have a strong recovery in these various 

components [58]. Wang and Chou concluded that COD concentration could be reduced to value 

greater than 90% by electrocoagulation, below the Taiwan discharge standard of 100 mg/L, provided 

that the concentration of chemical mechanical polishing wastewater was 200 mg/L NaCl, electrical 

potential of 20 V, and temperature of 25 degrees Celsius. With a 90% removal, it was noted that the 

water could be capable of being for possible reuse. Also, the kinetic study would reflect a pseudo-first 

kinetic model [59]. Espinoza-Quinones et al. concluded that by treating leather-finishing processes 

using an electrocoagulation process using aluminum electrode plates under a pH of 7.6 and an 

electrolysis time between 30 and 45 minutes, the treatment efficiency for COD, turbidity, total 

suspended solids (TSS), total fixed solids (TFS), total volatile solids (TVS.), and chemical effluent 

concentration. This was confirmed through analysis of variance (ANOVA) with a 95% confidence 

level [60]. 

Zhang et al. concluded that considering the use of organiochlorine pesticide contamination and 

found that a presence of pesticides within those soils. In addition, the authors suggested that human 

population within the vicinity of the soils were under a threat to being exposed to those pollutions, as it 

required treatment technologies to rid those pesticides from the soils [61]. Asselin et al. concluded that 

total suspended solids (TSS) was removed at 89%, turbidity 90%, BOD 86%, and oil and grease 99%, 

when completing electrocoagulation by combining mild steel or aluminum electrodes for treating 

slaughterhouse wastewater. In addition, it was identified that the total cost of treatment is 0.71 USD/m
3
 

treated poultry slaughterhouse (PS) effluent, particularly including energy and electrode consumption 

and chemical and sludge disposal [62]. El-Naas et al. concluded that through batch experiments it was 

proven that the most effective treatment for petroleum refinery wastewater was using aluminum 

electrodes. Factors that were discussed included current density and initial concentration of the 

wastewater, where the temperature was 25 degrees Celsius and pH of 8 [63]. Khansorthong and 

Hunsom were able to reduce color and COD by 91% and 77%, respectively, with operating costs of 

0.29 USD/m
3
 wastewater when treating pulp and paper mill by electrocoagulation in batch mode with 

6 iron mate pieces. For continuous electrocoagulation, 91% color and 77% COD reduction was 
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completed in 2.15 hours were first order kinetic was the model for filtering of choice. Also total BOD, 

COD, TSS, TDS, pH, and color were acceptable for Thai Government Standards [64]. 

Chatzisyneon et al. concluded that by using electrochemical oxidation of olive mill wastewater 

(OMW) with a TiO2 anode, it was noticed that the oxidation of OMW at 43 Ah/L, 80 degrees Celsius, 

and 5 mM NaCl can completely remove color, phenols, ecotoxicity, and low 30% COD removal with a 

50 A/cm
2
 current density [65]. Oelmez-Hanci et al. concluded that COD in olive mill wastewater was 

reduced by 30% and 20% TOC when using UV254 and UV280 analysis. Effects were noticed based on 

pH and coagulant/polymer dosages, Fenton treatment is based on pH and Fe(II) concentrations, steel 

electrodes at various concentrations, and current densities [66]. Raju et al. concluded that COD would 

be reduced from 1,316 mg/L to 42.9 mg/L when using electrocoagulation for the purpose of treating 

textile wastewater. Treatment was completed using graphite and RuO2/IrO2/TaO2 with titanium 

electrodes. Overall, electrooxidation noticed the effects of electrolyte type within relation to  

Cl
−
 ions [67]. 

Espinoza-Quniones et al. concluded that pollutant removal was completely accomplished for COD, 

turbidity, and concentrations of chromium, provided that pH is neutral and electrocoagulation ranges 

between 30 and 45 min. In addition, experimental design is necessary to be a factoral fraction 2
3
, for a 

leather finishing industrial process wastewater for organic and industrial pollutant removal [68]. Zaied 

and Bellahkal determined that using a pH of 7, electrolysis time of 50 minutes, current density of  

14 mA/cm
2
, treatment of black liquor by elecrocoagulation removed 98% COD, 92% polyphenols, and 

99% color [69]. Zaleska-Chrost et al. determined that laboratory conditions for electrocoagulation was 

a better treatment than chemical coagulation, having identified COD, turbidity, suspended solids, and 

color, where crude sewage is contingent on the pollutant removal efficiency [70]. Tezcan Un et al. 

concluded that electrocoagulation with aluminum electrodes was capable of successfully treating 

vegetable oil refinery wastewater with aluminum electrodes. Within the study, the authors considered 

optimum conditions for pH, poly-aluminum chloride (PAC) and Na2SO4 dosage. The concluding value 

was that 98.9% COD was removed in 90 minutes, where the current density was 35 mA/cm
2
 and 

energy consumption of 42 kWh/kg COD removed [71]. Sengil et al. determined that COD (82%), 

sulphide (90%), and oil-grease removal (96%) from tannery liming drum wastewater by 

electrogoaluation. Optimum parameters for treatment were 35 mA/cm
2
, 10 minutes electrolysis  

time, pH of 3, near energy consumption of 5.768 kWh/m
3
 COD, 0.524 kWh/m

3
 sulfide, and  

0.00018 kWh/m
3
 oil-grease. Kinetics from the experiment produced a pseudo-second order rate  

equation [72]. Desphande et al. concluded that bulk drug industry wastewater COD could be removed at 

34%, with a BOD5/COD ratio of 0.581 at 120 treatment time, when using the electrochemical method. 

The optuimum parameters include 95.83 kWh/kg energy consumption and an anode efficiency of 5.76 

kg COD/Am
2
h [73]. Linarez-Hernandez et al. observed that the combination of electrocoagulation and 

electroxidation was capable of successful at complining treatment—electrocoagulation coagulates and 

removes particulates, while electrocoagulation oxidizes what remains. Overall, the process is capable 

of reducing COD, BOD5, color, turbidity, and coliforms in 2 hours [74]. 

Wang et al. was capable of removing 62% COD when using ultrasound for electrocoagulation. 

Nevertheless, higher removal efficiency of COD is capable with optimum conditions of 5 V electrical 

potential, chlorine contact less than 2,500 ppm, two aluminum electrodes and a 999 mg/dm
3
 kWh 

amount per joule, where the treatment was contingent on the amount of aluminum plates present [75]. 
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Wang et al. concluding that by using iron and aluminum electrode pair, 200 ppm NaCl, 30 V of 

electricity, silica particles and turbidity reduction is feasible from oxide chemical mechanical wastewater 

with a particle size produced was between 520 and 1,900 nm as the time range was between 10 and 20 

minutes [76]. Merzouk et al. determined that 85.5% SS, 76.2% turbidity, 88.9% BOD, 79.7% COD, and 

93% color could removed by the combination of electrocoagulation-electroflotation after ensuring 

optimum conditions for 300 mg/L silica, current density of 11.55 mA/cm
2
, pH of 7.6, conductivity of 

2.1 mS/cm, treatment time of 10 minutes, and electrode gap of 1 cm. The study was to consider for the 

treatment of textile wastewater having studied the above optimum parameters [77]. Katal and 

Pahlavanzadeh determined that by using aluminum and iron electrodes for electrocoagulation, 

optimum pH between 5 and 7, current density of 70 mA/cm
2
 was capable of efficiently treating the 

wastewater at a low cost. In addition, temperature relationship also poorly affects the performance [78]. 

Meas et al. determined that by using an electrocoagulator with sacrificial electrodes, where COD 

(95%), color (99%), and turbidity (99%) can be reduced when testing fluorescent penetrated liquid for 

non-destructive testing of parts, where the water was reused 4 times [79]. Aoudj et al. determined that 

decolorization can be achieved at 98% under the optimum condition of a pH of 6, 1.875 A/cm
2
 current 

density, inter-electrode distance of 1.5 cm, and NaCl electrolyte when removing Direct Red 8 from 

synthetic wastewater treatment [80]. Monghadam and Amiri concluded that by using a current density 

of 75 A/m
2
, pH of 4, and conductivity of 3 mS/cm were capable of removing TOC from a  

phenol-formaldehyde resin manufacturing wastewater by electrocoagulation with aluminum  

electrodes [81]. 

5.3. Heavy Metals 

Bazrafshan et al. determined that Cr(VI) reduction from synthetic chromium solution could be 

under legal limits as long as treatment was between 20 and 60 minutes, a range for electric potential of 

20 and 40 V, and a pH of 3. Also, the authors determined that chromium removal efficiency was better 

with iron electrodes than aluminum [82]. Bing-Fang discovered that by using a room temperature of  

25 degrees Celsius, iron and stainless steel electrodes, a voltage and a pH of 4, and a Na2SO4 

concentration of 0.7 mg/L, and an electrolysis time of 30 minutes, electrocoagulation could treat a 

simulated wastewater with Cu
2+

 and Cr
6+

 removal of 93% and 98.91 effectively [83]. Hansen et al. 

concluded that a 1 L airlift electrocoagulator could reduce arsenic concentration by 96% (1000 mg/L to 

40 mg/L) by iron electrodes. Results indicated that the oxidation of Fe
2+

 to Fe
3+

 determined arsenic 

removal efficiency for arsenic concentration greater than 500 mg/L, whereas 98% arsenic removal was 

obtained for arsenic concentration of 100 mg/L. Also, the rate of removal was 0.08–0.1 mg As/C, 

where Fe-to-As ratio (mol/mol) was about 486 [84]. Qui et al. concluded that having a pH of 4, voltage 

2.5 V, hydraulic retention time of 15 minutes, current density of 25 A/m
2
, removal rate could be 

achieved at 99.5%, when treating electroplating wastewater by pulse electrocoagulation [85]. 

Belkacem et al. concluded that BOD5 removal was 93.5%, COD 90.3%, turbidity 78.7%, suspended 

solids, and color greater than 93% using electrofiltration with aluminum electrodes, where parameters 

involved electrical potential of 20 V, distance of 1 cm, and electrolysis time less than 20 minutes. Also, 

the kinetics was less than 5 minutes with a removal of 99% [86]. Rayman and White concluded that by 

using a parallel-plate electrochemical reactor, the reduction of Cr(VI) using Fe(II) as the anode, the 
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space velocity must remain at 0.02 s
−1

. It was also imperative to increase the current density by means 

of the current potential, the supporting electrolyte, decrease the distance between the electrodes for 

proper conversion; however, if one were to decrease the current density, the specific energy 

requirement increased [87]. Heidmann and Calmano was capable of treating galvanized wastewater by 

successfully reducing heavy metals of Cr and Cu by over 99% and 90% of Ni, as long as optimum 

conditions of a PH were greater than 5, 0.2 A for Fe electrodes, 1.5 A for Al electrodes, and a power 

consumption of 9.0 kWh/m
3 

[88]. Deniel et al. determined that by using iron and hybrid Al/Fe 

electrodes for electrocoagulation, the electrodes were capable of reducing the arsenic concentration by 

99%, as the current density was increased from 0.0082 to 0.0816 mA/cm [89]. 

Nouri et al. concluded that electrocoagulation had a treatment time between 20 and 60 minutes,  

40 V electrical potential for the removal of Cr(VI) ions by using iron electrodes, and a pH of 3 [90]. 

Wu et al. compared the use of electrocoagulation with aluminum and iron electrodes in combination 

with UV/TiO2 and ozone. It was determined that decolorization efficiency could be rincreased by 

combining UV/TiO2 or UV/O3, and it was able to reduce power requirement to 8 W. Also, pH was 

increased to 7.4 as well. What was also observed was that treatment followed pseudo-first order 

kinetics [91]. Heidmann and Calmano reported that the parameters affecting electrocoagulation 

process included the chromium concentration, charge loading, and current concentration. Cr 

concentration decreased slightly by coagulation time at high currents (1.0–3.0 A), whereas at low 

currents (0.05–0.1 A), 10 mg/L Cr was removed completely from the solution after 45 min [92]. Thella 

et al. concluded that electrode, water current, and gap affected the overall efficiency in treating for 

arsenic and chromium by a batch electrocoagulation [93]. Optimum conditions found were that the 

value of pH was 4.0 for arsenic removal and 2.0 for chromium, current density of 75 A/m
2
 for arsenic 

and 50 A/m
2
 for chromium and a stirring rate value of 100 rpm. Petsriprasit et al. determined that Cu, 

Cr, Pb, and Zn from billet industry wastewater was capable of being removed by 99%, where it was 

found that density current is 98 A/m
2
, pH of 5, and 30 minutes electrolysis time. It was noticed that 

within 120 minutes, pH of 3, and flow rate of 55 mL/min could obtain similar values [94]. 

Shafaei et al. was capable of removing Mn
2+

 ions by electrocoagulation with aluminum electrodes 

under an optimum pH of 7.0. Factors concluded by the authors were the density and electrolysis time, 

along with initial concentration were capable of determining successful removal rates [95]. 

Vansudervan et al. was capable of removing arsenate by electrocoagulation with aluminum alloy as 

anode and stainless steel as a cathode. The removal efficiency was 98.4%, current density of  

0.2 A/dm
2
, and a pH of 7.0. Arsenate adsorption could be fitted into a Langumir adsorption isotherm 

with first and second order rate equations [96]. 

5.4. Organic and Inorganic Removal 

Mahvi et al. concluded that sulfate removal was best removed whenever the electrical potential was 

30 V, reaction time 60 minutes, and pH of 11 when using a six-plate aluminum electrode 

electrocoagulator. Initial concentration was also an important factor as the authors considered 

treatment at 350 and 700 mg/L concentrations [97]. Kongjao et al. determined that chromium and 

pollutants could be removed within 95% by considering tannery wastewater with a one-step 

electrocoagulation process. Additional parameters included a pH between 7 and 9, current density of 
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22.4 A/m
2
, flow of 3.67 L/min, and 20 minute electrolysis time. Energy consumption was reported as 

being 0.13 kWh/m
3
 and a first order kinetics model for COD removal [98]. Kumar et al. concluded 

that COD and color removal was 50% and 95.2%, respectively, at optimum conditions for treatment of 

bio-effluent wastewater using electrocoagulation. Parameters to consider included current density 

between 44.65 and 223.25 Am/cm
2
, pH between 2 and 8, inter-electrode distance of 1 and 3 cm, and 

electrolysis time between 30 and 150 minutes. It was determined through ANOVA analysis the r
2
 

value was 0.8547 [99]. Barrea-Diaz et al. concluded that COD (92%), BOD (89%), color (92%), 

turbidity (95%), and total coliform (99%) when adding hydrogen peroxide to electrocoagulator using 

aluminum and iron electrodes to treat a complex wastewater consisting of organic compounds [100].  

Bhaskar Raju et al. determined that COD was removed between 90 and 93% by graphite, 54% by 

RuO2/IrO2/TaO2 coated titanium electrodes, when using various electrochemical methods for treating 

textile wastewater. The treatment method was electrocoagulation by steel electrodes for suspended 

solids and electroxidation for COD removal for the purpose of pretreatment method to reverse  

osmosis [101]. Yilmaz et al. studied the removal of boron from synthetic wastewater having 

considered pH as an optimum at 8.0. After looking at the resin/boron solution, boron concentration, 

stirring speed, and temperature, 99% removal occurred, where the boron removal rate was affected by 

stirring speed and temperature—increasing the speed, decreased the floc formulation and removal; 

increasing the temperature increased the boron removal. The authors developed a pseudo-second order 

model equation based on the heterogeneous fluid-solid reaction [102]. Xu et al. determined that by 

using multi-staged electrocoagulation, 99% removal from boron concentration was completed after the 

fifth stage taking the concentration from 500 mg/L to less than 0.5 mg/L under a current density of 

62.1 A/m
2
 [103]. In addition, the authors noticed that arsenic removal was successful in reducing the 

concentration from 15 mg/L to 0.5 mg/L. Hansen and Ottosen suggested that reason electrocoagulation 

is a suitable treatment for arsenic removal because of its ability to precipitate hydroxide-arsenic 

compounds. However, Ca(OH)2, prior to successful removal of arsenic required additional  

treatment [104]. Khatibikamal et al. determined that pH between 6 and 7, when using 

electrocoagulation with aluminum electrodes,was optimal for treatment, where the pH would be 

reduced over time, number of plates had no effect, and second rate kinetics model was concluded for 

absorption. Fluoride was reduced from 4 to 6 mg/L to 0.5 mg/L [105]. 

5.5. With Photolysis Degradation, Advanced Oxidation 

Boroski et al. concluded that electrocoagulation filtration combined photocatalysis using a 

UV/TiO2/H2O2 systems improved the biodegradable index (BOD/COD) from 0.48 after 

electrocoagulation to 0.89 with the use of the hybrid system, using 6 hours photocatalysis irritation, 

provided a 30 minute EC/Fe
0
, 153 A/m

2
, pH of 6.0. A COD reduction was 88% in the system, 

provided 50 mmol/L H2O2 and an additional NaCl concentration of 5.0 g/L reduced electrolysis time 

from 30 to 10 minutes [106]. Apaydin and Gonullu et al. concluded that COD and sulfide were capable 

of being removed at 46% and 90% during electrocoagualtion, whereas electro-Fenton was efficient in 

removing 54% and 85%, when treating tannery wastewater using iron electrodes. Operating 

parameters for the treatment process included electrical current of 33.3 mA/m
2
, electrical consumption 

of 1.5 kWh/m
2
 COD removal and 8.3 kWh/kg SO4

2−
 removed [107]. Parga et al. developed a 
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technique by using electrocoagulation as a method was very important as the photocatalysis 

degradation of cyanide by TiO2 required particle fineness; so using electrocoagulation for recovery has 

a 93% recovery rate. Also it was determined that the Langmuir isotherm procedures developed 

included (free energy value) ∆G
0
 = −37 kK/mol, enthalphy (∆H

0
 = −54 kJ/mol) and entropy  

(∆S
0 

= 0.524 kJ/mol), where TiO2 is 93% in 30 minutes electrolysis time and using a 50 W halogen  

lamp [108]. Rodrigues et al. observed 91% turbidity and 86% COD removal, going from 1,753 to  

60 mg/L using strictly electrocoagulation, while reduction was capable at 50 mg/L when using 

electrocoagulation combined with photocatalysis using titanium dioxide for treating pharmaceutical 

wastewater. Optimum conditions included iron electrodes, current density of 763 A/m
2
, 90 minute 

treatment time, and pH of 6, whereas photocatalysis (UV/TiO2/H2O2) consisted of a pH of 3,  

45 irritation, 0.25 g/L TiO2, 10 mmol/L H2O2 [109].  

Tezcan Un et al. concluded that by using a hybrid electrocoagulation with iron and aluminum 

electrodes and Na2SO4 and a pH of 7.8, the treatment process was capable of removing 94.4% COD of 

an initial concentration of 1,200 mg/L. The optimum parameters included a polyaluminum coagulation 

with 0.75 g/L PAC concentration. The treatment met slaughterhouse wastewater treatment standards in 

Turkey. Also, combined with the Fenton process, 81.1% COD was removed with 9% H2O2 [110]. 

Canizares et al. concluded that the use of a boron doped diamed (BDD) anode for soluble organic 

matter mineralization was capable of breaking down metalworking wastewater by physio-chemical 

processes using an electrochemical reactor [111]. Li et al. concluded that oil removal rate from oilfield 

wastewater using an electrocoagulator with sacrificial aluminum electrodes was capable of removing 

89.6%, where the current intensity is 1 A, plate spacing of 10 mm, initial oilfield concentration is  

500 mg/L, pH 7.2, and electrolysis time of 20 minutes [112]. Zhang et al. decolorized CI Acid Red 2 

on a platinum rotating disc resulting in a 98% reduction within 40 minutes by using an 

electrogenerated iron hydroxide from eelctrogenerated ferrous irons, where decolorization was 

combined with electrocoagulation electro oxidation procedures [113]. Hernandez-Ortega concluded 

that turbidity by color at 90% and COD by 60% when using a combined electrocoagulation-ozonation 

process with wastewater from 140 factories. This process was suitable to treat industrial wastewater 

prior to the biological process of wastewater treatment [114].  

5.6. Combined Treated with Adsorption, Membranes 

Narayanan and Ganesam observed that chromium (VI) removal can be achieved by the combination 

of electrocoagulation and granulation activated carbon (GAC) at a pH of 8. The optimum conditions 

would be considered when the current density has been increased to 26.7 mA/cm
2
, operating time of 

100 minutes for the electrocoagulation. The authors noticed that with GAC added to the systems it 

dramatically reduced the concentration of chromium [115]. Yüksel et al. determined that sodium 

doecyl sulfate (SDS) removal was 81.6% for peroxi-electrocoagulation, where the optimum conditions 

included 60 mg/L, 0.5 mA/cm
2
, 10 minutes electrolysis time, and an energy consumption of  

1.63 kWh/kg SDS. In addition, pseudo-second order equation was observed [116]. Kumarasinghe et al. 

concluded that for a model wastewater consisting of copper, lead, and cadmium, the removal was 

contingent and electrolysis time, current density, and solution pH when using a hybrid 
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electrocoagulation-ultradfiltration system. The authors concluded that removal was greatly affected by 

maintaining a non-acidic pH [117]. 

Aouni et al. discovered that COD, turbidity, and color could be removed from textile wastewater 

using electrocoagulation with nanofiltration. The parameters considered included current densities and 

experimental tense. For each treatment process, electrochemical treatment was for color and COD, 

while nanofiltration for color, COD, alkalinity, conductivity, and total dissolved solids (TDS) [118]. 

Yang and Tsai concluded that electrocoagulation/electrofiltration treatment with carbon filters and 

carbon/alumina tubular composite membranes was successful in treating chemical mechanical 

polishing of the copper layer (Cu-CMP) wastewater with pore size between 2 and 20 mm and nominal 

pore size of 3.5 mm. The treatment led to an 82 to 91% TS removal, TOC removal, Cu, and Si 

removals [119]. Chang et al. combined electrocoagulation-activated carbon adsorption-microwave 

generation. Through electrocoagulation, 39% COD removal occurred with pH of 8, electrolysis time of 

8 minutes, and a density of 277 A/m
2
, and a NaCl contact of 1 g/L. The study produced favorable 

results with 100 g/L GAC that removed 82% of Reactive Black 5 (RB5) and with 20 g/L GAC that 

removed the remaining 61% of COD [120]. Chou et al. used electrocoagulation for removal of COD in 

oxide CMP wastewater, where it was determined that COD could be reduced by 90%. Also, the 

authors determined that this process followed pseudo-second order under the Freundlich adsorption 

isotherm model at various densities and temperatures [121]. Lakshmanan et al. concluded that arsenic 

was removed by 98% when using NaCl, and was removed by 75% when using sodium sulfate and 

nitrate during a 5 minute appearance and an initial concentration of wastewater of 10 mg/L within the 

electrocoagulator. Adsorption was affected by several factors, including magnetic, particle size, and 

surface properties of the precipitate; solid waste from the treatment was non-hazardous [122]. 

5.7. Combined with Aerobic, Anaerobic Processes 

Yetilnezsoy et al. discovered a 90% COD and 92% color efficiency by electrocoagulation from an 

upflow aerobic sludge blanket reactor with aluminum and iron electrodes. It was also determined that 

aluminum electrodes were more efficient for treatment. Optimum conditions would be a pH of 5, 

current density of 15 mA/cm
2
, and an electrolysis time of 20 minutes [123]. Barrea-Diaz et al. 

concluded that COD was removed at 68% when combining with electrochemical and biological 

treatment for the removal of complex industrial wastewater using aluminum reactor. These treatment 

efficiencies improved recalcitrant concentrations in the wastewater as compared to biological whereas 

COD only reduced treatment by 30%. Also, the authors noticed that if aluminum polyhydroxychloride 

(PAC) coagulant was added at a rate of 4 mL/dm
3 

along with a batch electrochemical reactor, it would 

greatly improved COD and color results [124]. Basha et al. proved that the combination of 

electrochemical degradation and biological oxidation was capable of reducing COD by 80% from 

48,000 mg/L to 17,000 mg/L from the organic industrial wastes. The microorganisms used were 

Baciliu subtillis, Pseudomones aeruginosa, and Proteus vulgaris. It was concluded that the water could 

be reused following experiments [125]. Desphande et al. concluded that using a combined 

electrocoagulation and anaerobic fixed film reactor, COD, BOD, and color could be removed at 24%, 

35%, and 70%, respectively, with conditions of pH at 7.2, current density of 80 A/m
2
, and electrolysis 

time of 25 minutes for mere electrocoagulation. However, when combined with the anaerobic fixed 
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film reaction, removals increased to 80–90% COD, 86–94% BOD, at 0.6 to 4.0 kg COD/m
3
s organic 

loading rate [126]. 

Phalakornukule et al. concluded that treatment of Reactive Blue 140 and Direct Red 23 required 

electrical energy of 1.42 and 0.69 kWh/m
3
, respectively, with color (99%), COD (93%), and TS (89%) 

removal, when using a continuous electrocoagulation. In addition, the authors were able to harvest 

hydrogen [127]. Moises et al. conducted study to remove color (94%), turbidity (92%), COD (80%) 

for industrial wastewater at a flow rate of 50 mL/min [128]. 

5.8. Dye Removal 

Wang et al. determined that high removal efficiency of orange G simulated dye could be achieved, 

when the pH was 4.5, NaCl concentration was 0.75 g/L, space between electrodes was 10 mm, 

treatment time 10 minutes. The authors observed no relation with the applied voltage [129]. Rahgu and 

Basha removed 100% COD and 92% color by the use of Ti/RuO2/IrO2 as anode and stainless steel as 

cathode within an electrochemical membrane for the purpose of treating textile dyebath and generate 

caustic soda, where the caustic soda generation went from 40 to 210.28 g/L [130]. Phalakorkule et al. 

reported a study for treating Reactive Blue 140 reactive dye and disperse dye II. Results indicated that 

color was reduced by 95% with an energy consumption of 1 kWh/m
3
 and a dye concentration of  

100 mg/L during synthetic treatment [131]. Mollah et al. removed 94.5% of orange II dye from 10 

ppm at density of 160 A/m
2
, pH of 6.5, conductance of 7.1 mS/cm, flow rate of 350 mL/min, and NaCl 

concentration of 4.0 g/L [132]. 

5.9. Pretreatment 

Arsten-Alaton and Turkoglu concluded that using aluminum and stainless steel electrodes for color 

and COD removal for disperse dyebath, treatment was able to remove color and COD instantaneously 

at a pH of around 7.0 for complete color removal and 61% COD removal for conditions of using  

2,000 mg/L NaCl electrolyte and an electrical current density of 44 mA/cm. This process was 

compared to coagulation process which used aluminum sulfate as a coagulation between 200 and  

2,000 mg/L, under a pH between 3.5–11.5 [133]. Khoufi et al. concluded that elctrocoagulation as 

pretreatment was very successful in treating olive mill wastewater by reducing toxicity and improved 

the performance of methanization as long as the oxygen loading rate was between 4 and 7.5 COD/day. 

Because of electrocoagulation, anaerobic digestion and particularly methanization improved COD 

removal to 80%. Aerobic treatment removed COD by 78.7%, and extraction of ethyl acetate was at 90% 

recovery [134]. 

5.10. Other Treatment 

Koparal et al. concluded that removal efficiency for humic substances in synthetically prepared 

wastewater within electrocoagulation using aluminum plate electrodes was related to the initial pH at  

5 due to the presence of a gel layer formation on the anode surfaces. This was observed at high 

concentrations, where the concentration is greater than 120 mg/L [135]. Panizza and Cerisola was 

successful in removing 75% chemical oxygen demand (COD) from carwash wastewater by combining 
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electrocoagulation with iron anodes and electrochemical with boron-doped diamond anode. What was 

determined was a 2 mA/cm
2
, pH of 6.4, electrolysis time of 5 minutes. What was noticeable was that 

energy consumption is 0.4 kWh/m
3 

[136]. Yu et al. determined that chemical oxygen demand (CODcr) 

and turbidity was removed by 57.8% and 88.2% ,respectively, as it was observed that CODcr reduced 

from 144.15 mg/L to 60.96 mg/L, where turbidity was reduced from 39.06 NTU to 4.61 NTU. 

Operating parameters included 25 V electric potential, electrolysis time of 10 minutes, and a pH 

between 7 and 7.5 for carwash wastewater treated by electrocoagulation-flotating-contact filtration 

process [137]. 

Liu et al. concluded that removing chlorophyll-a and UV-254 was 81% and 56%, respectively, 

while turbidity was recorded at a value less than 2.6 NTU when using an electrocoagulation-flotation 

treatment system for landscape wastewater [138]. Mao et al. observed that the treatment of bathing 

wastewater was most effective in using electrocoauglation-air flotation, Biological Activated Carbon, 

Membrane Bioreactor, and filtration/ultrafiltration-biological activated carbon processes [139].  

Arslan-Alaton et al. was capable of achieving 100% color using current between 33 and 65 mA/cm
2
 

and the time within the elctrocoagulator using aluminum electrodes between 10 and 15 minutes. Also, 

it was noted that the electrical energy consumption was only 5 kWh/m
3
 within an electrocoagulator for 

treating real reactive dyebath effluent. This was contrary to using stainless steel electrodes which 

consumed 9 kWh/m
3
 of electrical energy [140]. Cano Rodriguez et al. concluded that using a 

photoremediation technique of having Myriophyllum aquaticum along with electrocoagulation and a 

current density of 45.45 A/m
2
, and pH of 8 couild remove COD (91%), color (97%), and turbidity 

(98%) from mixed industrial wastewater [141].  

6. Analytical and Instrumentation 

6.1. Equipment 

Moreno et al. studied green rust significance within electrocoagulation by considering measuring 

pH at locations near iron electrodes and observed that electrocoagulation was related to components 

such as solubility. Having analyzed components such as metal and non metal removal, suspended 

solids, organic compounds, COD (chemical oxygen demand) and BOD (biochemical oxygen demand), 

the authors observed that iron electrodes were more successful than aluminum electrodes for durability 

and cost [142]. Eyvaz et al. used electrocoagulation with parallel aluminum electrodes in batch mode 

for comparing alternative pulse current (APC) and direct current (DC) for treating Dianix Yellow XCC 

and Procium Yellow. It was determined that the alternating pulse current was better in removal of TOC 

and dye treatment as compared with the DC power supply [143]. Wang et al. found that using a pulse 

frequency between 500 to approximately 2,000 Hz had an effect on treatment performance. Overall, 

pulse current was found to be better than direct current, reducing power consumption by 40 to  

50% [144]. Wang et al. concluded that by using DC electrocoagulation, in a treatment time of  

25 minutes, decolorization and COD removal was 75.45% and 84.62%, respectively. The authors 

discovered a relationship between an increase of pH and alkalinity with increase in temperature, and 

electrolysis time, while voltage was related to current [145]. 
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6.2. Treatment Efficiency 

Hu et al. concluded that there was a relationship between flow rate and suspended solids in a 

continuous electrocoagulation-flotation system with aluminum electrodes—removal efficiency was 

decreased when flow rate was greater than 800 mL/min, increased at 200 mL/min. The authors 

concluded that the rG/S (gas-solid ratio) under 0.1 L/g was ineffective for flotation, while rG/L  

(gas-liquid ratio) over 0.4 discontinued the suspended solids removal, and in fact, increased suspended 

solids [146]. Abdelwahab et al. concluded a relationship between current density and pH for removal 

of phenol from oil refinery wastewater. It was determined that pH 7 and electrolysis time of two hours 

with electrocoagulation, that 97% of phenol was removed down to 30 mg/L. For petroleum wastewater, 

94.5% of phenol was removed within 2 hours [147]. 

6.3. Electrical Properties 

Sasson et al. reported that ferric anode was dissolved in a pH range between 5 and 9, electric 

current between 0.05–0.4 A, where rates were dependent on pH and oxidation rates of iron. The values 

calculated were theoretical based on Faraday’s law and what was observed was different because with 

the calculation of non-dissolution without current, additional electrons present with reactions outside 

the anode were placed in the calculation as important parameters [148]. Arslan-Altan and Turkoglu 

determined that alum was effective to remove color by 100% and COD by 64%. It was found that at 

optimum electrochemical conditions were 2,500 NaCl, pH 7, and current density is 44 mA/cm
2
. 100% 

color and 58% COD were removed for Aluminum electrodes where total treatment time of 30 minutes, 

as compared with 100% color and 45% COD removal using 2,000 mg/L NaCl, pH of 7.3, and a current 

density of 44 mA/cm
2
 with a 60 minute treatment time. The most optimum treatment for coagulation 

was alum as compared with ferrous sulfate and ferric chloride [149]. Mouedhen et al. concluded that 

electrocoagulation with iron and aluminum electrodes with hexavalent chromium by abatement with 

Cr(III), Fe(II), and Fe(III), where various anode/cathode configurations Fe/Fe, Pt Ti/Fe, Al/Al, and  

Pt Ti/Al were studied. Based on the results, Fe electrodes affected chromium removal by less than 5%, 

Fe(II) assisted in the removal where acid pH predominated [150]. Zongo et al. considered treatment of 

Cr(VI) by electrocoagulation using Al or Fe electrodes with a discontinuous system. The results 

showed that COD removal was not affected by Cr(VI) for aluminum electrodes, where for Fe 

electrodes there was delay ine COD removal. Also, it was determined that Cr(III) precipitation was due 

to Fe(OH)3 compound. However, removal could be through electrogenerated Fe(II), air oxygen, and 

reduction at the ion cathode [151]. 

6.4. Operating Parameters 

Arslan-Alaton concluded that complete color removal and partial COD removal could be 

accomplished by using an electrocoagulation by using both aluminum and stainless steel electrodes 

were optimized. In fact, the authors noticed that electrical energy and sludge production rate was  

lower with stainless steel (8 kWh/m
3
 and 700 g/m

3
) as compared to aluminum (17 kWh/m

3
 and  

8,200 g/m
3
) [152]. Zodi et al. determined several parameters considered when treating industrial 

wastewater. First, using electrocoagulation then settling, one can consider suspended solids, high 
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turbidity, and COD. Next, sludge data was compared with models, and then determined based on 

sludge volume index (SVI) for the optimum conditions [153]. Valero et al. determined that treatment 

of textile dye Remazol Red RB 133 by an electrocoagulator with a photovoltaic array configuration 

affected the power generated, where the major parameter flow ratio was controlled [154]. Canizares  

et al. concluded that pH had an overall effect on the treatment efficiency for electrocoagulation for 

synthetic oil-in-water emulsion and effluent from a door manufacturing facility [155]. 

6.5. Energy Requirements 

Sasson and Adin concluded that using electroflotation with a current of 0.4 A, followed by  

slow-mixing, and filtration to treat pure water with silica-chemical mechanical polishing was able to 

reduce energy requirements for filtration by 90%. Also, pH must remain above 7 since the permeate 

change colors due to iron residuals (Fe
2+

 to Fe
3+

) [156]. Sasson and Adin considered silica-CMP 

suspensions were pretreated by electrocoagulation at an electric current of 0.4 A, slow mixing, and 

filtration. Filtration energy was reduced by 90% whenever the pH was between 6 and 6.5, having 

noticed foul mitigation was on intensity and mechanisms, suspension pH and electroflocculation  

time [157]. Chou et al. concluded that by using an iron/aluminum electrode pair for electrocoagulation,  

100 mg/L NaCl, 20 mg/L initial wastewater concentration, and 20 V voltage application, indium (III) 

can be successfully removed. In addition, removal kinetics followed a pseudo second-order  

reaction [158]. Chou et al. concluded that COD and turbidity were removed by 90% and 98%, 

respectively, within real oxide-chemical mechanical polishing wastewater by means of a batch 

electrocoagulator. The authors noted that additional conditions that were optimum included 200 mg/L 

of NaCl, 20 V application of voltage and 12 min electrolysis time [159]. Terrazes et al. determined 

turbidity removal was 92% with an energy consumption of 0.68 kWh/m
3
 by using micro-electrolysis 

and macro-electrolysis electrocoagulation for tissue paper wastewater treatment [160]. 

7. Comparison 

Canizares et al. determined that using electrocoagulation consisted of lower costs for small 

coagulant requirement, as compared with coagulation, whereas higher requirement may favor 

conventional coagulation for removal of pollutants [161]. Khataee et al. developed a hybrid study 

using Fenton, electrocoagulation, UV/Nano-TiO2, Fenton-like, and Electro Fenton to remove C.I. Acid 

Blue 9, where 98% color was removed when the solution contained 20 mg/L, pH of 6, an electrolysis 

time of 8 minutes, and a current density of 25 mA/m
2
. Electrocoagulation was the second highest in 

decolorization efficiency, behind Fenton in decolorization efficiency [162]. 

El-Ashtoukhy and Amin concluded that electrocoagulation was capable of removing 87% of acid 

green dye 50, as compared COD removal of 68% for electrochemical oxidation. Energy consumption 

was lower in energy consumption (2.8 to 12.8 kWh/kg dye, versus 3.31 to 16.97 kWh/kg dye) [163]. 

Kılıç and Hoşten compared electrocoagulation and coagulation and stated that coagulation could be 

more efficient around 5–8, as compared to electrocoagulation using aluminum hydroxide as a 

precipitate. Electrocoagulation was second order kinetics on less than 10 minutes [164]. 
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8. Cost Analysis  

Having many treatment process options for wastewater treatment, it is necessary for 

electrocoauglation to be cost-effective. Kobya et al. found that the treatment of cadmium and nickel 

from electroplating rinse water could be achieved at 99.4% for cadmium, 99.1% for nickel, and 99.7% 

for cyanide. The cost for treatment was $1.05/m
3
 for cadmium and $2.45/m

3
 for nickel and cyanide 

provided that the treatment maintained optimum conditions [165]. Kobya et al. also studied Remazol 

Red 3B decolorization using iron electrodes and found that 99% decolorization was possible under 

optimum conditions. The authors found that energy consumption could achieve 3.3 kWh/kg dye at a 

cost of 0.6 euro/m
3
 [166]. Meas et al. concluded that aluminum electrodes are capable of treating 

fluorescent penetrant liquid for non-destructing testing part of aircraft industry. Having used 

electrocoagulation, the treatment present found 95% of chemical oxygen demand (COD), 99% color, 

and 99% turbidity. With this high level of treatment, the cost were able to have a return of  

17 weeks [167]. Asselin et al. experiment and analyzed oil bilge wastewater [OBW] at laboratory scale 

used iron and aluminum electrodes using bipolar (BP) and monopolar (MP) configuration. Using 

optimum conditions, treatment of oil bilge wastewater by electrocoagulation 93% biochemical oxygen 

demand, 95.6% oil and grease, 99.8% total suspended solids, and 98.4% turbidity. From this analysis, 

it was determined that the costs was $0.46/m
3
 of oil bilge treatment was for energy and electrode 

consumption, chemicals, and sludge disposal [168].  

Ghosh et al. used electrochemical using aluminum electrodes for the purpose of removing iron 

[Fe(II)] removal from tapwater having considered amorphous aluminum hydroxides, current densitites, 

and electrode density. From the experiment, the authors found that when treating a concentration of  

15 mg/L Fe(II) concentration, it would cost $6.05 USD/m
3
 of tapwater [169]. Drogui et al. used 

electrocoagulation with mild steel electrodes treating agro-industry (meat processing, cereal, and food 

beverages) wastewater. Considering chemical oxygen demand (COD), 82% removal was achieved 

with treatment costs between $0.95 and $4.93 USD/m
3
, where the costs included electrical power, 

chemical, and electrode consumption [170]. 

The application can be extended to the shipping industry. When using electrocoagulation-floccuation 

in this industry, Drogui et al. was capable of removing 80% turbidity, 56% chemical oxygen demand 

(COD), 90% oil and grease, and 89% biochemical oxygen demand (BOD) having used bipolar 

electrode arrangements. The cost including energy and electrode consumption and sludge disposal 

ranged between $1.54 to $2.40 CAN/m3 of ship waste effluent [171]. Khansorthong and Humson used 

electrocoagulation to treat wastewater from the pulp and paper mill industry using parallel iron 

electrode comparing current density, pH, and flow rate. When using the optimum conditions, it was 

found that to remove color (97%) and COD (77%) it would cost $0.29 USD/m
3
 of wastewater [172]. 

Orori et al. took sample a five locations from a Kraft pulp and paper mill effluent—primary settling 

tank, two aerated lagoons, a stabilization, and at the discharge comparing treatment efficiency using 

graphite electrodes and aluminum electrode with wood ash. Overall treatment with aluminum 

electrodes was better (60% BOD and 58.8% COD), but was more expensive than graphite ($0.0006 to 

0.0008 USD/m
3
 of wastewater) versus ($8.34 to $31.74 USD/m

3
 of wastewater) [173]. 
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9. Conclusion 

Electrocoagulation is a treatment process that is capable of being an effective treatment process as 

conventional methods such as chemical coagulation. Having observed trends over the last three years, 

it has been noted that electrocoagulation is capable of having high removal efficiencies of color, 

chemical oxygen demand (COD), biochemical oxygen demand (BOD), and achieving a more efficient 

treatment processes quicker than traditional coagulation and inexpensive than other methods of 

treatment such as ultraviolet (UV) and ozone. Unlike biological treatment which requires specific 

conditions, therefore limiting the ability to treat many wastewaters with high toxicity, xenobiotic 

compounds, and pH, eletrocoagulation can be used to treat multifaceted wastewaters, including 

industrial, agricultural, and domestic. Continual research using this technology will not only improve 

its efficiency, but new modeling techniques can be used to predict many factors and develop equations 

that will predict the effectiveness of treatment. 
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